
 1

The Design Space of Metamorphic Malware
Andrew Walenstein†

, Rachit Mathur‡, Mohamed R. Chouchane†, and Arun Lakhotia†

†University of Louisiana at Lafayette, Lafayette, LA, U.S.A.
‡McAfee Avert Labs, Beaverton, OR, U.S.A.
arun@louisiana.edu
rachit_mathur@avertlabs.com
mohamed@louisiana.edu
walenste@ieee.org

Abstract: A design space is presented for metamorphic malware. Metamorphic malware is the class of
malicious self-replicating programs that are able to transform their own code when replicating. The raison
d'etre for metamorphism is to evade recognition by malware scanners; the transformations are meant to
defeat analysis and decrease the number of constant patterns that may be used for recognition. Unlike prior
treatments, the design space is organized according to the malware author's goals, options, and implications
of design choice. The advantage of this design space structure is that it highlights forces acting on the
malware author, which should help predict future developments in metamorphic engines and thus enable a
proactive defence response from the community. In addition, the analysis provides effective nomenclature for
classifying and comparing malware and scanners.

Keywords: Metamorphic Malware, Virus Scanner.

1. Introduction

Metamorphism is the ability of malware to transform its code. This ability was first introduced in
viruses and was later used by worms, Trojans, and other malware. There now exist several
metamorphic engines—programs that implement only the logic for transforming code—that can
simply be linked to any program to make it metamorphic. Metamorphic malware can be classified
into four broad groups defined by two parameters. First, metamorphic malware may be either
closed-world or open-world. Closed-world metamorphic malware is malware that is self-contained;
in contrast, open-world malware may extend its capability by communicating with the world, say by
downloading plug-ins from the web. To our knowledge, all metamorphic malware thus far has been
closed-world, though open-world engines have been hypothesized (Driller 2002; Z0mbie; Ször and
Ferrie 2001). Second, metamorphic malware may be either a binary-transformer or an alternate-
representation-transformer. The former class transforms the binary image that is executed,
whereas the latter class carries its code in a higher level representation, which is used for
transformation.

Metamorphic engines, historically, have been written primarily by self-trained individuals, and have
tended to be complex and buggy. However, with nations adopting cyber-warfare doctrines, one
can anticipate an organized effort to develop state-of-the-art robust metamorphic engines. Besides,
even teenaged criminals have begun to make a handsome, albeit illegal, living from their craft and
hence have an incentive to improve the potency of their wares. Thus, it would be reasonable to
predict that, in the not too distant future, one would see highly stable metamorphic malware in the
wild. This paper takes a proactive stance in dealing with closed world binary transformer
metamorphic malware by analyzing its design space. It restricts attention primarily to the design
choices relevant to scanners that use only statically extractable information for detection.

Design spaces are frequently formalized as a collection of goals, actions and constraints, and their
implications or tradeoffs. Our design space analysis is from the view of the malware author, whose
primary goals are to have their malware function as intended, to effectively replicate, and to avoid
recognition by scanners. This analysis differs from prior treatments in that, instead of enumerating
design solutions in a relatively decontextualized way, it situates design choices in the context of the
malware designer's goals. It also traces tradeoffs between these choices and how their
interactions with one another affects the design goals of metamorphic malware. Making the design
space explicit in this way offers several benefits, including: providing ways of fundamentally
changing discourse by allowing discussion of abstract classes of malware designs, and laying the

groundwork for predictive models for future metamorphic engines by situating author options in the
context of their goals.

As is with any warfare technology, metamorphism has defensive applications as well. Dube, Edge
at al. (2006) have investigated the use of metamorphism as a means of protecting software. With
software rapidly becoming one of the key elements of modern defense, including warheads and
bombs, methods to protect software takes on a different level of significance. Indeed, Edge, Dube
et al. (2006) explicitly studies the protection mechanisms used by computer viruses and how they
may be used for protecting software. While the discussion in this paper considers the design
choices for an adversary using metamorphism, it is obvious that the same set of choices is equally
applicable when metamorphism is used for defense.

The paper is structured as follows. Section 2 introduces the prototypical anatomy of closed-world,
binary-transforming metamorphic malware. This anatomy is used to structure our model of the
design space for such metamorphic malware. This space is outlined in Section 3. Section 4 lays
out the design space by traversing through the anatomy and listing options designers have for
implementing their goals, drawing implications and tradeoffs arising from these options along the
way. Section 5 concludes the paper by summarizing the advantages of the structure, and by listing
directions for future work.

2. Prototypical anatomy of metamorphic malware

The classes of design options available to a malware author are related to the logical structure of
the metamorphic programs they create. Thus, in order to organize a presentation of design
choices, this logical structure must first be described. Our model of the anatomy of a prototypical
closed-world, binary-transforming metamorphic engine is constructed as an analogue to Singh’s
anatomy of a computer virus (Singh 2002). It is more granular than that introduced by Lakhotia et
al. in (Lakhotia, Kapoor et al. 2005), however. The anatomy of a metamorphic engine identifies
functional units (or organs) which are conceptual units of tasks that must be performed by the
engine but are not required to be implemented as modules or functions. Figure 1, adapted from
the model of Lakhotia et al. (Lakhotia, Kapoor et al. 2004), depicts our simplified model of the
anatomy. The features of the model are as follows.

Analyze

Locate own code

Decode

Transform

Attach

Figure 1: Anatomy of a metamorphic engine

Locate own code. A metamorphic engine must be able to locate the code to be transformed each
time it is called upon to transform it. Parasitic metamorphic malware which transforms both its own
code and its host’s must be able to locate its own code in the new variant.

Decode. The metamorphic engine will need to decode information that is required to perform the
transformations. A key piece of information is the metamorphic program itself since, in order to
transform itself, some representation of itself is needed so that it knows how to make the
transformations. In essence, this involves disassembly. However a metamorphic engine may also
need to decode other types of information it requires for analysis or transformation. The
information can be encoded in the malware body, either in the data segments, or in the code itself.
Choice including using flags, bit-vectors, markers, hints, and so on. For example, the Miss Lexotan

engine encodes register liveness information by storing it in the second argument of an “xor ebp,

immed” instruction (Vecna 1998). Ordinary unpacking or decrypting of the whole executable is not
within the scope of this Decode organ.

Analyze. In order for the metamorphic transformations to work correctly, certain information will
normally need to be available. For example, certain transformations are semantics-preserving only
when a given register is known to be dead. In order to perform these transformations correctly,
then, the engine must have register liveness information available. When such information is not
made explicitly available (and hence decoded), it must be constructed by the engine itself. In the
case of register liveness, this can be constructed, in part, via a “def-use” analysis. The control flow
graph (CFG) of the program is one piece of information that is frequently required for analysis and
transformation. It may be used, for example, to rewrite the control flow logic of a program if a
transformation expands the size of code.

Transform. The Transform step transforms the malware code into equivalent code, usually by
replacing instruction blocks in the code to be transformed with equivalent ones. Well known
metamorphic transformations include register-renaming, code substitution, NOP insertion, garbage
insertion, and instruction reordering within a block.

Attach. Parasitic metamorphic malware need to attach the new version to a host file.

The ordering of the organs represents the direction of information flow, which is not required to be
the execution order. The feedback loop acknowledges that the output of a metamorphic engine
may become its input in the next generation. This feedback has previously been deemed as the
Achilles’ heel of a metamorphic virus (Lakhotia, Kapoor et al. 2004). It is critical for understanding
the implications of design choices and the tradeoffs that typically must be made during engine
design.

3. The structure of the design space

There are possibly many ways of constructing useful models of a design space such as the one
facing authors of metamorphic engines. Significantly, a design space is more than just a listing of
possible solution features: it must relate to resolution of designer's goals, and make explicit the
tradeoffs implicit in various solution strategies. We define a model of the design space for
metamorphic malware in terms of goals, options, and implications. Goals are things the designer
intends to achieve. Options are ways of achieving goals and typically have both negative and
positive implications. Implication analysis follows options to how they affect other options or goals.
We therefore treat the design space as a graph of design choices connecting goals and other
design choices via design implications.

Goals. The typical goals of metamorphic malware are to thwart reliable detection (even when the
scanners are given one of its variants), propagate effectively, and perform its intended functions.
Another important goal common to malware authors is simplicity or parsimony, i.e., they usually
wish to choose the simplest and easiest option for achieving their other goals. There are two main
goals relating to thwarting detection. First and foremost, the central purpose of metamorphism is to
reduce the number of statically identifiable patterns in that can be used for signature detection.
Second, the author may wish to make it difficult for scanners or human analysts to properly analyze
its code.

Options. The key goals of a metamorphic malware author are in thwarting detection by reducing
the number of identifiable patterns, and by raising the level of difficulty for analysis. For the former
purpose, program transformations are selected that alter the form of the code without affecting its
functionality. In general, the aim is for maximal change in form between all variants created. For
the latter purpose, obfuscating transformations can be used, or transformations can be selected
that require the solution of problems too difficult for scanners to perform. In the general case, the
obfuscations may make only minimal impact on the form but still disable recognition by scanners.
Key design choices available to the metamorphic malware designer relate to how these
transformations are implemented. Any metamorphic engine must have access to information about
the code to transform. This information allows the engine to determine whether or not some

program transformation can be performed at a given point in the code. For the purposes of this
closed-world engine design space, there are three possible ways of furnishing this information: (1)
encode it into the malicious program itself, (2) assume it, or (3) construct it through self-analysis.
These strategies yield multiple options, depending upon what the information is needed for. These
options are enumerated in a principled manner by consulting the anatomy of the metamorphic
engine from Section 2.

Implications. The complexity of the design space is greatly affected by how the goals, options,
and implications interact. In a simple design space no design choice restricts or interferes with
another (i.e., there are no cross-cutting constraints), no tradeoffs need to be made, and no options
impact multiple goals. In a complicated design space there are such interactions and tradeoffs.
Metamorphic malware presents an especially complicated design space because of the "meta":
the space is a recursive one—one in which design choices affect prior design choices. If the
metamorphic engine did not need to transform its output, the space would be less complicated.
Instead, because it must transform its own output, a single design decision may create many
implications, both positive and negative.

Consider an example. A designer's goal may be to defeat disassembly by malware scanners. One
option would be to insert jumps over junk bytes, which can defeat so-called “linear-sweep”
disassembly. However this decision has consequences: now the malware itself cannot use linear-
sweep disassembly in its own analysis. Inserting junk bytes is one option, but notice the design
space is not understood until the implications are elicited and placed within the context of the
designer's goals.

Some initial remarks about the options are required before continuing. Recall that we listed three
different strategies for defeating anti-malware analysis: removing consistent patterns, defeating
analysis methods through obfuscation, and requiring scanners to solve difficult problems.
Ordinarily, the latter type of attack is possible because the engine is able to more readily access or
compute information needed to perform the analysis and transformations. A scanner may not
always be able to construct the same information. For example, a metamorphic engine may
capitalize on the existence of problems which are widely believed to be hard on average. These
problems are currently relied upon in many cryptographic schemes and can be used by a
metamorphic engine to introduce obfuscations only it can efficiently solve (using some sort of
"certificate" or "extra knowledge") and thus be able to efficiently analyze its code in order to
transform it. A metamorphic engine may also capitalize on the existence of problems which are
widely believed to be hard in the worst case. These include the NP-complete problems. Coming up
with “efficient exact” solutions to these problems is an immediate ticket to fame and fortune and is
obviously not a reasonable expectation of a generic anti-malware scanner. Designers of anti-
malware scanners can at most apply “efficient approximate” solutions to such problems (or efficient
exact solutions to their sub-problems).

4. The design space

Given the anatomy of a metamorphic engine and the formula for its structure the design space can
be present. The following sections list some of the significant design choices in the space. It is
organized by the organization of organs in the prototypical malware.

4.1 Locate own code

Parasitic metamorphic malware must locate its own code in order to transform it. There are two
main possibilities for transformation: keep it in a fixed location (the host executable's entry point),
or change its locations. While the former option satisfies goals of simplicity, it does little to advance
the goal of thwarting detection. The latter forces the engine to discover the locations. One option is
to encode it; frequently this is done by using special markers or code segments known to indicate
the beginning of the malware code. The marker can remain constant across generations of the
malware or it can be transformed. There are tradeoffs to either choice. If the marker is required to
remain constant across generations, then the transform step may not transform it. This is obviously
the easiest choice for the engine, but it leaves it open to detection techniques which look for that

specific marker. If the marker is transformed by the engine, simplicity is traded off since the engine
now needs some method for creating new marking techniques programmatically.

4.2 Decode

Information may be encoded in the malware body to enable it to successfully carry out any of the
tasks identified in its anatomy. To further harden the task of malware scanners, the engine could
deliberately require the scanner to “answer hard questions” at any of these steps. We use the word
“hard” here very loosely to refer to problems which are unsolvable (e.g., the Halting problem),
known not to have an efficient exact solution (e.g., provably intractable problems), believed not to
have an exact efficient solution (e.g. NP-complete problems), or simply whose known solutions still
require an unacceptably high amount of space or time to carry out their computations on modern
computers. These questions, of course, should not be as hard to answer for the engine.

To circumvent the hardness of some general question, the engine may carry—or otherwise know
how to infer from the code—some extra information that enables it to quickly answer this question
and move on to the next functional unit and eventually be successful in efficiently generating a
semantically equivalent variant of the malware. The Miss Lexotan virus, for example, embeds
register liveness information in the code to be transformed so that it can transform the code without
the need to perform an imprecise and inefficient def-use analysis on the entire program. But if the
embedded information is constant it simplifies the scanner's problem. Transforming the encoding
during replication adds complexity to the engine and may restrict the set of transformations it can
successfully apply.

The simplest disassembly technique, the one commonly used by disassembly tools and
debuggers, is linear sweep (Linn and Debray 2003). While meeting the goal of simplicity, the
choice of using linear sweep significantly limits the code for which the malware can yield correct
disassembly. For instance, for architectures such as the Intel IA32, linear sweep cannot correctly
disassemble programs with code and data interspersed, with data bypassed using jump
instructions (Z0mbie; Lakhotia, Kapoor et al. 2004). Another option is to use other, more powerful,
disassembly methods such as recursive traversal or knowledge-based disassembly. They both
expand the class of programs that can be disassembled, but still may not yield correct results with
programs using jump tables for indirect transfer of control (Linn and Debray 2003).

The choice of a disassembler has several important implications. An important overall effect is that
it can limit the transformations that the metamorphic engine may perform. Since the malware needs
to disassemble its own code, it cannot afford to use obfuscating transformations that thwart its
chosen disassembly method. The disassembler choice can also constrain the choice of variation-
inducing transformations. For example, using a linear sweep method may simply rule out adding
variety to the control logic via jump tables. The choice of a disassembler also has an effect on the
set of target host files that a metamorphic virus can infect. For instance, a metamorphic engine that
does not disassemble floating-point instructions will not be able to correctly disassemble any
payload that contains such instructions. As a result such programs cannot acquire metamorphic
capabilities by linking to that engine. Metamorphic malware can also deliberately use anti-
disassembly obfuscation techniques that only it can quickly circumvent, normally because of
assumptions it makes. The opcode shifting metamorphic transformation was shown by Dube et al.
(Dube, Edge et al. 2006) to be quite effective at thwarting disassembly of the malicious code.

4.3 Analyze

Metamorphic engines have several options to choose from to construct the information needed for
successful transformation and attachment. As described in Section 3, the designer can choose not
to provide the information, or can choose to assume properties, encode the required information, or
extract it.

Provide no information.

Choosing not to provide the information will restrict the designer's options for transformations. For
example, one of the most commonly required pieces of information is a control-flow graph (CFG).

A CFG is required to “rewire” the control flow if the starts of basic blocks are moved during
transformation. So if a CFG is not available the malware author may not, in general, be able to add
transformations that shrink or grow the program. Similar information, including register liveness and
block-boundary information, are also commonly needed during transformation. Without them the
engine designer is analogously restricted in the payload and engine code, and in the choice of
transformations relating to registers and code blocks. This restriction is felt particularly keenly
when implementing conditional transformations (see Section 4.4).

Restrictions on the transformations normally constrain the effects of metamorphism, reducing the
variation and simplifying the problem of scanning. For example, without liveness, many expression
transformations are not feasible, and then compiler techniques such as constant folding might be
used to counteract variation-inducing transformations, thus assisting the scanner. In general, A
number of other exact and approximate techniques were developed to assist anti-malware
scanners in detecting metamorphic malware that uses these techniques. Code normalization
techniques have been proposed to counter the code substitution and instruction reordering
transformations (Lakhotia and Mohammed 2004; Bruschi, Martignoni et al. 2006; Walenstein,
Mathur et al. 2006). Techniques based on analyzing the structure of the malware’s code and its
control-flow graph have also been studied to counter the effects of these and other transformations
(Kruegel, Kirda et al. 2005; Bruschi, Martignoni et al. 2006) (Jha, Seshia et al. 2005).

Assumptions.

The designer can choose to encode certain assumptions within the engine, obviating the need for
the information. Since code is written by the malware author herself, she can ascertain that the
assumptions hold throughout her code. This choice simplifies construction, but restricts the code to
only that which follows the assumptions. Furthermore, the choice may also make certain
transformations more difficult, or even impossible. For example, if Analyze and Transform steps

make use of the property “register eax is not live after a push eax”, it needs to be preserved for it
to work correctly again in its offspring. Thus the Transform organ must generally ensure that this
property holds across all variants of the malware.

Encoding.

Hints or data may be encoded using a certain pattern of code. For instance, as it propagates,
metamorphic malware can also carry a data structure encoding the malware’s full CFG.
Alternatively, it might encode only some hints in the code that tells it how to obtain the targets of an
indirect jump or call instruction. The metamorphic engine can use the CFG for its analysis,
transform the code, and create an encoding of the new CFG. The construction of the initial CFG
can be done with special tools, or manually, before the malware is released.

Such an encoding of information can make analysis a breeze for the engine but not for an anti-
malware scanner that is not aware of the existence or significance of the hint. For example, as
mentioned before the Miss Lexotan engine encoded liveness information in special instructions.
For any scanner not aware of these, a time consuming def-use analysis is required on the entire
code. Moreover, such analysis is usually imprecise and hence unhelpful in detecting the inserted
garbage code. More generally, metamorphic engines which encode information needed in
transformation succeed in performing semantics-preserving transformations correctly because
such engines know how to interpret (and what to infer from) such encodings. Furthermore, the
engines can introduce obfuscations that cannot be deobfuscated by a general deobfuscator. The
engine would use such encodings (which are unintelligible to a general scanner) to understand its
obfuscations. This constitutes an explicit attempt by the engine to defeat deobfuscation. Current
engines do not appear to explicitly try to trip deobfuscators. They carry additional information (or
assumptions) so they can do their own work correctly.

Extraction.

Extracting the information frequently means implementing complicated analysis routines; these
require skill and are difficult to correctly implement. They run counter to the designer's goals of
parsimony. Several implications are created by the choice of information to extract.

Choosing to extract a CFG can place other restrictions on the type of code that can be used in the
payload or engine, and can restrict the range of transformations it can make that affect control flow.
Ignoring the impact of exceptions or signal handling, the completeness of the CFG depends on the
correct decoding of jump and call instructions. There are two types of jump and call instructions:
direct and indirect. In the direct category are instructions in which the address to which control is
transferred is available in the instruction itself. Indirect jump/call instructions are those which obtain

Figure 2: Conditional and Unconditional Transformations

the address for transferring control from either register or memory location. CFG construction is
easy if only direct transfers of control are used. When indirect jumps are present, it may be
extremely difficult to discover all possible branch targets; in the worst case, it is not solvable. Thus
the decision often involves a tradeoff involving three issues: simplicity or ease in analysis, flexibility
in the code that can be used, and choice of transformation types to implement scanner defeats.

Other information, including register liveness and block-boundary, may also be needed, and these
normally also require construction of a CFG.

One alternative strategy that can be used to ease the difficulty of generating the engine is to limit
static analyses to relatively simple ones. This choice forces the engine to live with the potential
impreciseness of the resullts. Clearly these will limit the Transfom organ since conditional
transformations (see Section 4.4) may need to rely in precise information (such as “is the value n
this register a constant?”) to be semantics-preserving.

4.4 Transform

A simple choice to implement the Transform step is as a collection of transformation rules, such as
those of a term-rewriting system (Walenstein, Mathur et al. 2006). When a code segment matches
an instance of the left hand side (LHS) of a rule, it may be replaced by an instance of the right hand
side (RHS) of the rule. The rule-based transformations can be further classified along two
dimensions: a) the preconditions necessary for applying transformations and b) the transformation
unit or the chunk-size of the LHS. Each dimension provides design options.

Preconditions for applying transformations.

The transformations can be classified into two categories: unconditional or conditional. The former
type can be applied whenever a code segment matches the LHS of the rule; application of the
latter transformation requires a match with the LHS plus certain other conditions must hold. Some
of these conditions are exemplified by the rules in Figure 2 implemented in the virus W32.Evol.
Rules (a) and (b) of this figure are unconditional rules, whereas the rules (c) and (d) are

(a) mov [esi+4], 9 � mov [esi+4], 6

 add [esi+4], 3

(b) mov [ebp+8], ecx � push eax

 mov eax, ecx

 mov [ebp+8], eax

 pop eax

(c) push 4 � mov eax, 4

 push eax

(d) push eax � push eax

 mov eax, 2Bh

conditional. The RHS of rule (c) modifies the register eax, which is not modified by the LHS. To
ensure that the transformed program has the same behavior as the original program it is necessary

that the register eax not be live at the instruction where the rule is applied. The same condition

also applies for (d), even though the LHS also modified eax. Nevertheless, the condition is not
required for rule (b) in which eax is modified in the RHS, used, and then restored.

Figure 3: Single, block and SESE sub-graph transformations

Clearly, applying only unconditional transformations is easier for the metamorphic engine.
However, this choice also makes it easy for an anti-malware scanner to reduce the various
generations to a single form, provided the transformation rules are known (Walenstein, Mathur et
al. 2006). To perform conditional transformations, the metamorphic engine must have the
information required to verify the condition so that it can preserve the overall semantics of the
program. In Figure 1 the task of computing this information is allocated to the Analyze organ.

Transformation chunk size.

To ensure correctness of transformations, it is ordinarily easiest if transformation rules are applied
on single-entry single-exit (SESE) code segments (Lakhotia and Deprez 1998). Rules that are
applied on SESE segments can further be classified on the chunk size of the SESE segment, i.e.,
whether it is a single instruction, a block of instructions, or a SESE subgraph. Figure 3 provides
examples of these categories. Rule (a) transforms a single instruction; Rules (b) and (c) transform
blocks of instructions; Rule (d) transforms a SESE subgraph. By definition, a single instruction is
SESE, if exception conditions are ignored. So when the chunk size is a single instruction a rule
may be applied if the LHS matches (and preconditions, if any, are satisfied). However, for chunk
sizes greater than a single instruction it also becomes necessary for the metamorphic engine to
ensure that the code segment matching the LHS is SESE, which in turn depends on correct
construction of the CFG.

The choice of chunk size can significantly affect the type of transformations that can be performed
in hopes of thwarting detection. W32.Evol only applies single-instruction transformations; as a

(a) mov eax, 10 � mov eax, 5

 add eax,5

(b) mov eax, 5 � mov eax, 1

 sub eax, 10 add eax, 2

 sub eax, 8

(c) mov eax, 5 � mov eax, 10

 add eax, 5

(d) cmp eax, 5 � cmp eax, 5

 ja L1 ja L1

 cmp eax, 2 cmp eax, 5

 je L2 jb L2

 cmp eax, 5 L1 : mov ebx, 3

 jb L3 jmp L3

 L1 : mov ebx, 3 L2 : mov ebx, 10

 jmp L4 jmp L3

 L2 : mov ebx, 10 L3

 jmp L4

 L3 : mov ebx, 10

 jmp L4

 L4

consequence its code monotonically increases over subsequent generations. On the other hand,
Metaphor transforms single-instructions and blocks, thus causing its code to expand and shrink
(Driller 2002). Though transformation of non-SESE segments is possible, the transformations also
increase the theoretical challenges needed to ensure that the rules preserve correctness.

5. Conclusions

Metamorphism is known to have the potential to make detection of malicious code extremely
difficult. While metamorphic malware to date have tended to be proof-of-concept and buggy, the
threat of metamorphism is not to be taken lightly. We classify metamorphic malware as open-world
vs closed-world and binary-transformer vs alternate-image transformer. Our analysis of the design
space for closed-world binary transforming metamorphic malware yields an understanding of the
space of design choices available to a malware author. Care was taken to link design choices
available to the designer's goals and the implications and tradeoffs that the choices imply. The
analysis makes it clear that the space is primarily structured by the needs of the metamorphic
engine (its organs) and by the tradeoffs between transformation power and difficulty of
implementation and analysis. The information needed to correctly implement the various
transformations is a central theme.

This analysis of tradeoffs lays a foundation for anticipating future directions in metamorphic engine
design. At this time, one possible conclusion that can be made is that in the near-term, the main
analysis battlefield is likely to be over encoded or assumed properties. The tradeoff analysis
provided suggests that as a reasonable conclusion because of a confluence of forces: encoding or
assuming properties meets parsimony goals, it can force scanners to solve hard problems, and it
frees the metamorphic malware designer to consider more powerful obfuscating or variation-
inducing transformations that improve the ability to thwart detection. This then gives a malware
author the upper hand and counters the earlier observation that “if a metamorphic malware can
analyze itself, so can the scanner” (Lakhotia, Kapoor et al. 2005).

Further research is needed to improve the model of design space. One improvement that can be
entertained is to create a more complete inventory of designer goals such that additional realistic
design rationales can be constructed. A second advance would be to refocus the space on a more
principled deconstruction of the information needed during transformation, and how it can be
provided. This more detailed space is expected to be especially beneficial for predicting what
properties are likely to be assumed, which information may be hidden and where, and how each
choice influences the tug-of-war between the ‘vxers’ and ‘avers.’ It should also provide a more
fine-grained vocabulary for discussing the classes of malware.

Acknowledgments

This work has been sponsored in part by funds from Louisiana Governor’s Information Technology
Initiative.

References

Bruschi, D., L. Martignoni, et al. (2006). Detecting Self-Mutating Malware Using Control Flow Graph
Matching. Proceedings of the Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), IEEE Computer Society.

Bruschi, D., L. Martignoni, et al. (2006). Using Code Normalization for Fighting Self-Mutating
Malware. Proceedings od the International Symposium of Secure Software Engineering,
IEEE Computer Society.

Driller, M. (2002) Metamorphism in practice or "How I made MetaPHOR and what I've learnt". VX
Heavens. http://vx.netlux.org/lib/vmd01.html.

Dube, T. E., K. S. Edge, et al. (2006). Metamorphism: A Software Protection Mechanism.
International Conference on Inforfmation Warfare (ICIW2006), University of Maryland
Eastern Shore, USA.

Edge, K.S., Dube, T.E., et al. (2006). A Taxonomy of Protection Used in Computer Viruses and
Their Application to Software Protection, International Conference on Inforfmation Warfare
(ICIW2006), University of Maryland Eastern Shore, USA.

Jha, C. M., S. Seshia, et al. (2005). Semantics-Aware Malware Detection. IEEE Symposium on
Security and Privacy: 32-46.

Jordon, M. (2002). Dealing with metamorphism. Virus Bulletin: 4-6.
Kruegel, C., E. Kirda, et al. (2005). Polymorphic Worm Detection Using Structural Information of

Executables. Proceedings of the International Symposium on Recent Advances in Intrusion
Detection (RAID), Springer-Verlag.

Lakhotia, A. and J.-C. Deprez (1998). Restructuring Programs by Tucking Statements into
Functions. Journal of Information & Software Technology 40: 677-689.

Lakhotia, A., A. Kapoor, et al. (2004). Are Metamorphic Viruses Really Invincible? - Part I. Virus
Bulletin: 5-7.

Lakhotia, A., A. Kapoor, et al. (2005). Are Metamorphic Viruses Really Invincible? - Part II. Virus
Bulletin: 9-12.

Lakhotia, A. and M. Mohammed (2004). Imposing Order on Program Statements and its implication
to AV Scanner. Proceedings of 11th IEEE Working Conference on Reverse Engineering,
Delft, The Netherlands, IEEE Computer Society Press, Los Alamitos, CA.

Linn, C. and S. Debray (2003). Obfuscation of Executable Code to Improve Resistance to Static
Disassembly. Conference on Computer and Communications Security, Washington D.C.,
USA, ACM: Association for Computing Machinery.

Singh, P. K. (2002). A Physiological Decomposition of Virus and Worm Programs. Center for
Advanced Computer Studies, University of Louisiana, Lafayette.

Stepan, A. E. (2005). Defeating Polymorphism: Beyond Emulation. Virus Bulletin Conference.
Ször, P. and P. Ferrie (2001). Hunting for metamorphic. Virus Bulletin Conference, Prague, Czech

Republic.
Vecna (1998). Miss Lexotan 8, 29A E-Zine.
Walenstein, A., R. Mathur, et al. (2006). Normalizing Metamorphic Malware Using Term Rewriting.

Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM
2006).

Z0mbie. About reversing. VX Heavens. http://vx.netlux.org/lib/vzo14.html.
Z0mbie. Some ideas about metamorphism. VX Heavens. http://vx.netlux.org/lib/vzo20.html.

